10 research outputs found

    Electrophysiological properties of human beta-cell lines EndoC-βH1 and -βH2 conform with human beta-cells

    Get PDF
    © The Author(s) 2018Limited access to human islets has prompted the development of human beta cell models. The human beta cell lines EndoC-βH1 and EndoC-βH2 are increasingly used by the research community. However, little is known of their electrophysiological and secretory properties. Here, we monitored parameters that constitute the glucose-triggering pathway of insulin release. Both cell lines respond to glucose (6 and 20 mM) with 2- to 3-fold stimulation of insulin secretion which correlated with an elevation of [Ca2+]i, membrane depolarisation and increased action potential firing. Similar to human primary beta cells, KATP channel activity is low at 1 mM glucose and is further reduced upon increasing glucose concentration; an effect that was mimicked by the KATP channel blocker tolbutamide. The upstroke of the action potentials reflects the activation of Ca2+ channels with some small contribution of TTX-sensitive Na+ channels. The repolarisation involves activation of voltage-gated Kv2.2 channels and large-conductance Ca2+-activated K+ channels. Exocytosis presented a similar kinetics to human primary beta cells. The ultrastructure of these cells shows insulin vesicles composed of an electron-dense core surrounded by a thin clear halo. We conclude that the EndoC-βH1 and -βH2 cells share many features of primary human β-cells and thus represent a useful experimental model.Peer reviewedFinal Published versio

    Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D

    Get PDF
    Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.Peer reviewe

    Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps

    Get PDF
    We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci,135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency 2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).Peer reviewe

    Inferring causal genes at type 2 diabetes GWAS loci through chromosome interactions in islet cells [version 2; peer review: 2 approved]

    No full text
    Background: Resolving causal genes for type 2 diabetes at loci implicated by genome-wide association studies (GWAS) requires integrating functional genomic data from relevant cell types. Chromatin features in endocrine cells of the pancreatic islet are particularly informative and recent studies leveraging chromosome conformation capture (3C) with Hi-C based methods have elucidated regulatory mechanisms in human islets. However, these genome-wide approaches are less sensitive and afford lower resolution than methods that target specific loci. Methods: To gauge the extent to which targeted 3C further resolves chromatin-mediated regulatory mechanisms at GWAS loci, we generated interaction profiles at 23 loci using next-generation (NG) capture-C in a human beta cell model (EndoC-βH1) and contrasted these maps with Hi-C maps in EndoC-βH1 cells and human islets and a promoter capture Hi-C map in human islets. Results: We found improvements in assay sensitivity of up to 33-fold and resolved ~3.6X more chromatin interactions. At a subset of 18 loci with 25 co-localised GWAS and eQTL signals, NG Capture-C interactions implicated effector transcripts at five additional genetic signals relative to promoter capture Hi-C through physical contact with gene promoters. Conclusions: High resolution chromatin interaction profiles at selectively targeted loci can complement genome- and promoter-wide maps

    Ionizing Radiation Potentiates High-Fat Diet-Induced Insulin Resistance and Reprograms Skeletal Muscle and Adipose Progenitor Cells

    No full text
    Exposure to ionizing radiation increases the risk of chronic metabolic disorders such as insulin resistance and type 2 diabetes later in life. We hypothesized that irradiation reprograms the epigenome of metabolic progenitor cells, which could account for impaired metabolism after cancer treatment. C57Bl/6 mice were treated with a single dose of irradiation and subjected to high-fat diet (HFD). RNA sequencing and reduced representation bisulfite sequencing were used to create transcriptomic and epigenomic profiles of preadipocytes and skeletal muscle satellite cells collected from irradiated mice. Mice subjected to total body irradiation showed alterations in glucose metabolism and, when challenged with HFD, marked hyperinsulinemia. Insulin signaling was chronically disrupted in skeletal muscle and adipose progenitor cells collected from irradiated mice and differentiated in culture. Epigenomic profiling of skeletal muscle and adipose progenitor cells from irradiated animals revealed substantial DNA methylation changes, notably for genes regulating the cell cycle, glucose/lipid metabolism, and expression of epigenetic modifiers. Our results show that total body irradiation alters intracellular signaling and epigenetic pathways regulating cell proliferation and differentiation of skeletal muscle and adipose progenitor cells and provide a possible mechanism by which irradiation used in cancer treatment increases the risk for metabolic disease later in life.</jats:p

    Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci

    No full text
    Human genetic studies have emphasised the dominant contribution of pancreatic islet dysfunction to development of Type 2 Diabetes (T2D). However, limited annotation of the islet epigenome has constrained efforts to define the molecular mechanisms mediating the, largely regulatory, signals revealed by Genome-Wide Association Studies (GWAS). We characterised patterns of chromatin accessibility (ATAC-seq, n=17) and DNA methylation (whole-genome bisulphite sequencing, n=10) in human islets, generating high-resolution chromatin state maps through integration with established ChIP-seq marks. We found enrichment of GWAS signals for T2D and fasting glucose was concentrated in subsets of islet enhancers characterised by open chromatin and hypomethylation, with the former annotation predominant. At several loci (including CDC123, ADCY5, KLHDC5) the combination of fine-mapping genetic data and chromatin state enrichment maps, supplemented by allelic imbalance in chromatin accessibility pinpointed likely causal variants. The combination of increasingly-precise genetic and islet epigenomic information accelerates definition of causal mechanisms implicated in T2D pathogenesis.</p

    TIGER : The gene expression regulatory variation landscape of human pancreatic islets

    No full text
    Genome-wide association studies (GWASs) identified hundreds of signals associated with type 2 diabetes (T2D). To gain insight into their underlying molecular mechanisms, we have created the translational human pancreatic islet genotype tissue-expression resource (TIGER), aggregating >500 human islet genomic datasets from five cohorts in the Horizon 2020 consortium T2DSystems. We impute genotypes using four reference panels and meta-analyze cohorts to improve the coverage of expression quantitative trait loci (eQTL) and develop a method to combine allele-specific expression across samples (cASE). We identify >1 million islet eQTLs, 53 of which colocalize with T2D signals. Among them, a low-frequency allele that reduces T2D risk by half increases CCND2 expression. We identify eight cASE colocalizations, among which we found a T2D-associated SLC30A8 variant. We make all data available through the TIGER portal (http://tiger.bsc.es), which represents a comprehensive human islet genomic data resource to elucidate how genetic variation affects islet function and translates into therapeutic insight and precision medicine for T2D
    corecore